— Все документы — ГОСТы — ГОСТ 32388-2013 ТРУБОПРОВОДЫ ТЕХНОЛОГИЧЕСКИЕ. НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ, ВИБРАЦИЮ И СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ


ГОСТ 32388-2013 ТРУБОПРОВОДЫ ТЕХНОЛОГИЧЕСКИЕ. НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ, ВИБРАЦИЮ И СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ

ГОСТ 32388-2013 ТРУБОПРОВОДЫ ТЕХНОЛОГИЧЕСКИЕ. НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ, ВИБРАЦИЮ И СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ

Межгосударственный стандарт ГОСТ 32388-2013
"ТРУБОПРОВОДЫ ТЕХНОЛОГИЧЕСКИЕ. НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ, ВИБРАЦИЮ И СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ"
(введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 3 апреля 2014 г. N 304-ст)


Processing pipes. Standards and calculation methods for the stress, vibration and seismic effects


Дата введения - 1 августа 2014 г.
Введен впервые

Предисловие


Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте


1 Разработан Некоммерческим партнерством "Сертификационный центр НАСТХОЛ" (НП "СЦ НАСТХОЛ"), Научно-техническим предприятием Трубопровод (ООО "НТП Трубопровод")

2 Внесен Межгосударственным техническим комитетом по стандартизации МТК 155 "Соединения трубопроводов общемашиностроительного применения"

3 Принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 18 октября 2013 г. N 60-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97
Код страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
Армения
AM
Минэкономики Республики Армения
Беларусь
BY
Госстандарт Республики Беларусь
Киргизия
KG
Кыргызстандарт
Россия
RU
Росстандарт
Таджикистан
TJ
Таджикстандарт
Узбекистан
UZ
Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 3 апреля 2014 г. N 304-ст межгосударственный стандарт ГОСТ 32388-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 августа 2014 г.

5 Введен впервые

Введение


Стандарт предназначен для специалистов, осуществляющих проектирование, строительство и реконструкцию трубопроводов технологических в нефтеперерабатывающей, химической, нефтехимической, газовой и других смежных отраслях промышленности.
Стандарт выпущен в развитие СА 03-003-07. В стандарте:
- учтены все изменения к СА 03-003-07;
- добавлен раздел по расчету на прочность трубопроводов высокого давления (более 10 МПа);
- добавлен раздел по оценке прочности трубопроводов при сейсмических воздействиях;
- добавлен раздел по расчету прочности криогенных трубопроводов с рабочей температурой от минус 269°С;
- добавлен раздел по оценке устойчивости как подземных, так и надземных трубопроводов;
- приведена методика определения отбраковочных толщин;
- добавлены требования по расчету трубопроводов, прокладываемых в грунте без устройства каналов (бесканальная прокладка);
- добавлена методика расчета переходов, косых врезок и косых тройников (в которых ответвление неперпендикулярно магистральной части);
- усовершенствована методика расчета вакуумных трубопроводов;
- внесены прочие правки в методику расчета, отражающие опыт, накопленный за время использования СА 03-003-07;
- стандарт распространяется не только на стальные трубопроводы, но и на трубопроводы из цветных металлов (титана, меди, алюминия и их сплавов) и из полимерных материалов.

1 Область применения


1.1 Настоящий стандарт распространяется на технологические трубопроводы, работающие под внутренним давлением, вакуумом или наружным давлением, из углеродистых и легированных сталей, цветных металлов (алюминия, меди, титана и их сплавов) с рабочей температурой от минус 269°С до плюс 700°С при отношении толщины стенки к наружному диаметру (s-c)/Da≤0,25 и технологические трубопроводы из полимерных материалов с рабочим давлением до 1,0 МПа и температурой до 100°С, предназначенные для транспортировки жидких и газообразных веществ (сырье, полуфабрикаты, реагенты, промежуточные или конечные продукты, полученные или использованные в технологическом процессе), к которым материал труб химически стоек или относительно стоек.
Стандарт распространяется на проектируемые, вновь изготавливаемые и реконструируемые технологические трубопроводы, эксплуатирующиеся на опасных производственных объектах в закрытых цехах, наружных установках, а также прокладываемые надземно на низких, высоких опорах, эстакадах и подземно в непроходных, полупроходных каналах и защемленные в грунте (бесканальные).
Стандарт применим при условии, что отклонения от геометрических размеров и неточности при изготовлении рассчитываемых элементов не превышают допусков, установленных нормативно-технической документацией.
1.2 Настоящий стандарт устанавливает требования к определению толщины стенки труб и соединительных деталей трубопровода под действием внутреннего избыточного и наружного давления, а также методы расчета на прочность и устойчивость технологических трубопроводов.
Поверочный расчет трубопровода предусматривает оценку статической прочности и малоцикловой усталости трубопровода под действием нагрузок и воздействий, соответствующих как нормальному технологическому режиму, так и допустимым отклонениям от такого режима.
Поверочный расчет на сейсмические воздействия выполняется для трубопроводов, расположенных на площадках с сейсмичностью 7, 8 и 9 баллов по шкале MSK-64.
Предусмотрен расчет трубопровода на вибрацию при пусконаладочных работах и эксплуатации. Приведены рекомендации по определению амплитуды и частоты пульсаций давления рабочей среды, генерируемых оборудованием, и собственных частот колебаний трубопровода. Сформулированы условия отстройки трубопровода от резонанса. Даны критерии прочности трубопровода при наличии вибрации.
Внутренние силовые факторы и реакции опор определяют расчетом трубопровода как упругой стержневой системы с учетом реальной гибкости элементов и сил трения в опорах скольжения по методам строительной механики стержневых систем. Нагрузки на оборудование и опоры определяют в рабочем и холодном (нерабочем) состояниях трубопровода, а также при испытаниях.
Оценка прочности проводится раздельно на действие несамоуравновешенных нагрузок (весовые и внутреннее давление) и с учетом всех нагружающих факторов, в том числе температурных деформаций. При соблюдении условий малоцикловой усталости допускается значительная концентрация местных напряжений, обусловленных температурным нагревом в рабочем состоянии трубопровода.

2 Нормативные ссылки


В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности,
ГОСТ 12.1.044-89 Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения
ГОСТ 25.101-83 Расчеты и испытания на прочность. Методы схематизации случайных процессов нагружения элементов машин и конструкций и статистического представления результатов
ГОСТ 12815-80 Фланцы арматуры, соединительных частей и трубопроводов на Py от 0,1 до 20,0 МПа (от 1 до 200 кгс/см2). Типы. Присоединительные размеры и размеры уплотнительных поверхностей
ГОСТ 12816-80 Фланцы арматуры, соединительных частей и трубопроводов на Py от 0,1 до 20,0 МПа (от 1 до 200 кгс/см2). Общие технические требования
ГОСТ 12817-80 Фланцы литые из серого чугуна на Py от 0,1 до 1,6 МПа (от 1 до 16 кгс/см2). Конструкции и размеры
ГОСТ 12818-80 Фланцы литые из ковкого чугуна на Py от 1,6 до 4,0 МПа (от 16 до 40 кгс/см2). Конструкции и размеры
ГОСТ 12819-80 Фланцы литые стальные на Py от 1,6 до 20,0 МПа (от 16 до 200 кгс/см2). Конструкции и размеры
ГОСТ 12820-80 Фланцы стальные плоские приварные на Py от 0,1 до 2,5 МПа (от 1 до 25 кгс/см2). Конструкции и размеры
ГОСТ 12821-80 Фланцы стальные приварные встык на Py от 0,1 до 20,0 МПа (от 1 до 200 кгс/см2). Конструкции и размеры
ГОСТ 12822-80 Фланцы стальные свободные на приварном кольце на Py от 0,1 до 2,5 МПа (от 1 до 25 кгс/см2). Конструкции и размеры
ГОСТ 30546.1-98 Общие требования к машинам, приборам и другим техническим изделиям и методы расчета их сложных конструкций в части сейсмостойкости

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения


В настоящем стандарте применены следующие термины и определения:
3.1 акселерограмма: Зависимость ускорения колебаний от времени.
3.2 акселерограмма землетрясения: Акселерограмма на свободной поверхности грунта при землетрясении.
3.3 акселерограмма поэтажная: Ответная акселерограмма для отдельных высотных отметок сооружения, на которых расположен трубопровод.
3.4 воздействие: Явление, вызывающее внутренние силы в элементе трубопровода (изменение температуры стенки трубы, деформация основания и др.).
3.5 воздействие деформационное (кинематическое): Воздействие на трубопровод в виде перемещения, например температурные расширения, неравномерная осадка опор, смещение точек присоединения к оборудованию и т.д., измеряется в миллиметрах, градусах и т.д. Деформационные воздействия являются самоуравновешенными и для трубопроводов считаются менее опасными, чем силовые. Деформационные воздействия в статически определимых системах не вызывают появление внутренних усилий, а вызывают только перемещения.
3.6 воздействие силовое: Воздействие на трубопровод в виде силы, измеряется, например, в ньютонах, мегапаскалях, ньютонах на метр и т.д. Силовые воздействия являются несамоуравновешенными и считаются более опасными, чем деформационные воздействия. Силовые воздействия вызывают внутренние усилия и перемещения как в статически определимых, так и в статически неопределимых системах.
3.7 давление пробное: Избыточное давление, при котором должно проводиться гидравлическое испытание трубопровода и его деталей на прочность и герметичность.
3.8 давление рабочее (нормативное): Наибольшее внутреннее давление, при котором обеспечивается заданный режим эксплуатации трубопровода.
3.9 давление расчетное: Максимальное избыточное внутреннее давление, на которое рассчитывают трубопровод или его часть на прочность.
3.10 допускаемое напряжение: Максимальное безопасное напряжение при эксплуатации рассматриваемой конструкции.
3.11 землетрясение: Колебания земли, вызываемые прохождением сейсмических волн, излученных из какого-либо очага упругой энергии.
3.12 интенсивность землетрясения: Мера величины сотрясения грунта, определяемая параметрами движения грунта, степенью разрушения сооружений и зданий, характером изменений земной поверхности и данными об испытанных людьми ощущениях.
3.13 категория сейсмостойкости: Категория трубопровода, зависящая от степени опасности (риска), возникающего при достижении предельного состояния трубопровода для здоровья и жизни граждан, имущества физических или юридических лиц, экологической безопасности окружающей среды.
3.14 компенсатор: Участок или соединительная деталь трубопровода специальной конструкции, предназначенная для восприятия температурных деформаций трубопровода за счет своей податливости.
3.15 ККСК: Корень квадратный из суммы квадратов.
3.16 линейно-спектральный метод анализа: Метод расчета на сейсмостойкость, в котором значения сейсмических нагрузок определяются по спектрам ответа в зависимости от частот и форм собственных колебаний системы.
3.17 метод динамического анализа: Метод расчета на воздействие в форме акселерограмм колебаний грунта в основании трубопровода путем численного интегрирования уравнений движения.
3.18 нагрузка: Силовое воздействие, вызывающее изменение напряженно-деформированного состояния трубопровода.
3.19 нагрузка или воздействие нормативные: Наибольшая нагрузка, отвечающая нормальным условиям работы трубопровода.
3.20 нагрузка или воздействие расчетные: Произведение нормативной нагрузки или воздействия на соответствующий коэффициент надежности, учитывающий возможность отклонения нагрузки или воздействия в неблагоприятную сторону.
3.21 назначенный ресурс: Суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния.
3.22 назначенный срок службы: Календарная продолжительность эксплуатации, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния.
3.23 неподвижная опора (мертвая): Крепление трубопровода, исключающее линейные перемещения и угловые перемещения по трем степеням свободы.
3.24 нормативное длительное сопротивление разрушению: Сопротивление разрушению материала труб (фитингов) из условия работы на внутреннее давление при заданном сроке службы трубопровода и температурном режиме его эксплуатации.
3.25 осциллятор линейный: Линейная колебательная система с одной степенью свободы, характеризуемая определенным периодом собственных колебаний и затуханием (демпфированием).
3.26 отклик: Ответная реакция конструкции (перемещение, ускорение, внутреннее усилие, нагрузка на опору и т.д.) на сейсмическое возмущение.
3.27 площадка размещения трубопровода: Территория, на которой размещается трубопровод, или территория, на которой находится сооружение с размещенным внутри трубопроводом.
3.28 предел прочности (временное сопротивление): Нормативное минимальное значение напряжения, при котором происходит разрушение материала при растяжении.
3.29 предел текучести: Нормативное минимальное значение напряжения, с которого начинается интенсивный рост пластических деформаций при растяжении материала.
3.30 разжижение грунта: Процесс, вследствие которого грунт ведет себя не как твердое тело, а как плотная жидкость. Разжижение более характерно для насыщенных влагой сыпучих грунтов, таких как илистые пески или пески, содержащие прослойки непроницаемых для воды отложений. Разжижение грунта может произойти во время землетрясения, потому что при прохождении сейсмической волны частицы грунта колеблются с разными скоростями и часть контактов между ними нарушается, в результате грунт может превратиться в жидкость с взвешенными в ней песчинками.
3.31 расчетная схема (модель): Условная аксонометрическая схема (упрощенная модель) конструкции, которой заменяют реальную конструкцию для выполнения расчетов на прочность и устойчивость.
3.32 район размещения трубопровода: Территория, включающая в себя площадку размещения трубопровода, на которой возможны сейсмические явления, способные оказать влияние на безопасность эксплуатации трубопровода.
3.33 сейсмическая волна: Упругая волна в геологической среде.
3.34 сейсмическая волна продольная; Р-волна: Сейсмическая волна, за фронтом которой колебания частиц происходят в направлении ее распространения.
3.35 сейсмическая волна поперечная; S-волна: Сейсмическая волна, за фронтом которой колебания частиц происходят в направлении, перпендикулярном направлению ее распространения.
3.36 сейсмическая волна Релея; L-волна: Интерференционная волна, распространяющаяся вдоль свободной поверхности грунта, поляризованная в вертикальной плоскости; возникает при отражении глубинных волн от дневной поверхности грунта (аналогично волнам на воде), при этом элементарная частица грунта совершает круговые движения.
3.37 сейсмическая волна Лява; L-волна: Поперечная поверхностная волна, поляризованная в горизонтальной плоскости, возникающая при наличии зоны малых скоростей.
3.38 сейсмическое микрорайонирование: Комплекс специальных работ по прогнозированию влияния особенностей приповерхностного строения, свойств и состояния пород, характера их обводненности, рельефа на параметры колебаний грунта площадки.

Примечание - Под приповерхностной частью разреза понимается верхняя толща пород, существенно влияющая на приращение интенсивности землетрясения.

3.39 сейсмичность площадки размещения трубопровода: Интенсивность возможных сейсмических воздействий на площадке размещения трубопровода, измеряемая в баллах по шкале MSK-64.
3.40 сейсмостойкость трубопровода: Свойство трубопровода сохранять при землетрясении способность выполнять заданные функции в соответствии с проектом.
3.41 система геометрически изменяемая: Система (в строительной механике), элементы которой могут перемещаться под действием внешних сил без деформации (механизм).
3.42 система мгновенно изменяемая: Предельный случай геометрически неизменяемой системы (в строительной механике), допускающей бесконечно малые перемещения.
3.43 система стержневая: Несущая конструкция (в строительной механике), состоящая из прямолинейных или криволинейных стержней, соединенных между собой в узлах.
3.44 система статически определимая: Геометрически неизменяемая система (в строительной механике), в которой для определения всех реакций связей (усилий в опорных закреплениях, стержнях и т.п.) достаточно уравнений статики.
3.45 система статически неопределимая: Геометрически неизменяемая система (в строительной механике), в которой для определения всех реакций связей (усилий в опорных закреплениях, стержнях и т.п.) необходимы помимо уравнений статики дополнительные уравнения, характеризующие деформации системы.
3.46 скорость сейсмической волны: Величина, равная отношению расстояния между двумя точками геологической среды к времени пробега сейсмической волны между этими точками.
3.47 соединительная деталь: Деталь или сборочная единица трубопроводами трубной системы, обеспечивающая изменение направления, слияние или деление, расширение или сужение потока рабочей среды (отводы, тройники, переходы и др.).
3.48 состояние испытания: Состояние трубопровода после заполнения водой или воздухом (газом) под пробным давлением при испытании трубопровода на прочность и плотность.
3.49 состояние монтажное: Состояние трубопровода после завершения его монтажа, наложения тепловой изоляции, выполнения предварительной (монтажной) растяжки, регулировки всех пружинных цепей и заварки всех стыков, при этом температурный перепад и продукт в трубах отсутствуют.
3.50 состояние рабочее: Состояние трубопровода после первого разогрева и заполнения продуктом, а также приложения других нагрузок и воздействий (снег, обледенение, ветер, осадка опор и т.д.).
3.51 состояние холодное (нерабочее): Состояние, в которое переходит трубопровод из рабочего состояния после первого охлаждения (или нагрева - для низкотемпературных трубопроводов) до монтажной температуры и снятия давления.
3.52 спектр коэффициентов динамичности: Безразмерный спектр, полученный делением значений спектра ответа на максимальное ускорение грунта.
3.53 спектр ответа: Совокупность абсолютных значений максимальных ответных ускорений линейного осциллятора при заданном акселерограммой воздействии с учетом собственной частоты и параметра демпфирования осциллятора.
3.54 спектр ответа поэтажный: Совокупность абсолютных значений максимальных ответных ускорений линейного осциллятора при заданном поэтажной акселерограммой воздействии.
3.55 стержень: Тело (в строительной механике), длина которого во много раз превосходит характерные размеры его поперечного сечения, при этом ось стержня может быть прямолинейной или криволинейной.
3.56 температура расчетная: Температура материала детали, по которой выбирают величину допускаемого напряжения при расчете толщины стенки и вычисляют температурный перепад при расчете на прочность трубопровода.
3.57 толщина стенки номинальная: Толщина стенки трубы или соединительной детали, указанная в стандартах или технических условиях.
3.58 устойчивость трубопровода: Свойство конструкции трубопровода поддерживать первоначальную форму оси или форму его поперечного сечения.
3.59 фазовая группа креплений: Группа креплений, которая при сейсмическом воздействии всегда смещается синхронно. Например, все опоры трубопровода, установленные на одном этаже здания, смещаются синхронно относительно опор, установленных на земле. Все крепления, присоединенные к одному и тому же оборудованию, так же как и первые, смещаются синхронно, т.е. представляют собой фазовую группу опор.
3.60 этап расчета: Условное сочетание нагрузок и воздействий, особенностей расчетной схемы и физико-механических характеристик материалов, соответствующее определенному состоянию трубопровода (рабочему, холодному, состоянию испытаний и т.д.) и используемое при определении напряженно-деформированного состояния трубопровода.
3.61 стандартное размерное отношение SDR: Безразмерная величина, численно равная отношению номинального наружного диаметра трубы к номинальной толщине стенки.

4 Обозначения и сокращения


Возврат к списку

(Нет голосов)

Комментарии (0)


Чтобы оставить комментарий вам необходимо авторизоваться
Самые популярные документы
Новости
Все новости