— Все документы — ГОСТы — ГОСТ Р 55596-2013 СЕТИ ТЕПЛОВЫЕ. НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ И СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ


ГОСТ Р 55596-2013 СЕТИ ТЕПЛОВЫЕ. НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ И СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ

ГОСТ Р 55596-2013 СЕТИ ТЕПЛОВЫЕ. НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ И СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ

Национальный стандарт РФ ГОСТ Р 55596-2013
"СЕТИ ТЕПЛОВЫЕ. НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ И СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ"
(утв. приказом Федерального агентства по техническому регулированию и метрологии от 25 октября 2013 г. N 1196-ст)


District heating systems. Standard for the stress and seismic analysis


Дата введения - 1 мая 2014 г.
Введен впервые

Предисловие


1 Разработан Некоммерческим партнерством "Сертификационный центр НАСТХОЛ" (НП "СЦ НАСТХОЛ"), Научно-техническим предприятием Трубопровод (ООО "НТП Трубопровод"), Россия

2 Внесен МТК 155 "Соединения трубопроводов общемашиностроительного применения"

3 Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 25 октября 2013 г. N 1196-ст

4 Введен впервые

Введение


Настоящий стандарт предназначен для специалистов, осуществляющих проектирование, строительство и реконструкцию трубопроводов тепловых сетей.
Выпущен взамен РД 10-400-01 "Нормы расчета на прочность трубопроводов тепловых сетей".
Стандарт разработан Научно-техническим предприятием Трубопровод (ООО НТП "Трубопровод") при участии Группы "Полипластик", ЗАО "Завод АНД Газтрубпласт", ОАО "ВНИПИЭнергопром", ОАО "Инжпроектсервис", ОАО НПО "ЦНИИТМАШ".
Разработка выполнена авторским коллективом в составе:
В.Я. Магалиф, А.В. Матвеев, А.З. Миркин - ООО НТП "Трубопровод";
И.А. Данюшевский, О.Б. Киреев - АООТ "НПО ЦКТИ им. И.И. Ползунова";
А.Н. Бирбраер, А.В. Петренко - ОАО "СПбАЭП";
В.В. Коврига, И.В. Гвоздев - Группа "Полипластик", ЗАО "Завод АНД Газтрубпласт";

Г.Х. Умеркин, А.И. Короткое - ОАО "ВНИПИЭнергопром".

1 Область применения


1.1 Настоящий стандарт распространяется на проектируемые, вновь изготавливаемые и реконструируемые:
- стальные трубопроводы водяных тепловых сетей с рабочим давлением до 2,5 МПа включительно и рабочей температурой до 200°С включительно,
- стальные паропроводы с рабочим давлением до 4,0 МПа включительно и рабочей температурой до 250°С включительно (категория III, группа 2) от выходных запорных задвижек коллекторов источника теплоты или от наружных стен источника теплоты до выходных запорных задвижек тепловых пунктов (узлов вводов) зданий и сооружений,
- трубопроводы водяных тепловых сетей из гибких стальных гофрированных труб с рабочим давлением до 1,6 МПа включительно и рабочей температурой до 150°С включительно,
- трубопроводы водяных тепловых сетей из гибких полимерных труб с рабочим давлением до 1,0 МПа включительно и рабочей температурой до 95°С включительно.
1.2 Настоящий стандарт распространяется как на воздушные тепловые сети (в каналах, городских и внутриквартальных тоннелях, надземные), так и на тепловые сети, защемленные в грунте (бесканальные).
1.3 Настоящий стандарт устанавливает методы расчета на прочность трубопроводов тепловых сетей, а также требования по определению толщины стенки труб и соединительных деталей трубопровода для обеспечения их несущей способности под действием внутреннего избыточного давления.
Поверочный расчет трубопровода предусматривает оценку статической и циклической прочности трубопровода под действием нагрузок и воздействий, соответствующих как нормальному режиму эксплуатации, так и допустимым отклонениям от такого режима.
Поверочный расчет на сейсмические воздействия выполняется для трубопроводов, расположенных на площадках с сейсмичностью 7, 8 и 9 баллов по шкале MSK-64.
Внутренние силовые факторы и реакции опор определяются расчетом трубопровода как упругой стержневой системы с учетом реальной гибкости элементов и сил трения в опорах скольжения по методам строительной механики стержневых систем. Нагрузки на оборудование и опоры определяются в рабочем и холодном (не рабочем) состояниях трубопровода, а также при испытаниях.
Оценка прочности проводится раздельно на действие несамоуравновешенных нагрузок (весовые и внутреннее давление) и с учетом всех нагружающих факторов, в том числе температурных деформаций. При соблюдении условий циклической прочности допускается значительная концентрация местных напряжений, обусловленных температурным нагревом в рабочем состоянии трубопровода.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие нормативные и технические документы:
ГОСТ Р 52857.1-2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Общие требования
ГОСТ Р 52857.3-2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Укрепление отверстий в обечайках и днищах при внутреннем и внешнем давлениях. Расчет на прочность обечаек и днищ при внешних статических нагрузках на штуцер
ГОСТ Р 52857.4-2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет на прочность и герметичность фланцевых соединений
ГОСТ Р 52857.9-2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Определение напряжений в местах пересечений штуцеров с обечайками и днищами при воздействии давления и внешних нагрузок на штуцер
ГОСТ 30732-2006 Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана с защитной оболочкой. Технические условия
ГОСТ 25.101-83 Расчеты и испытания на прочность. Методы схематизации случайных процессов нагружения элементов машин и конструкций и статистического представления результатов

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 акселерограмма: Зависимость ускорения колебаний от времени.
3.2 акселерограмма землетрясения: Акселерограмма на свободной поверхности грунта при землетрясении.
3.3 акселерограмма поэтажная: Ответная акселерограмма для отдельных высотных отметок сооружения, на которых расположен трубопровод.
3.4 воздействие: Явление, вызывающее внутренние силы в элементе трубопровода (изменение температуры стенки трубы, деформация основания и др.).
3.5 воздействие деформационное (кинематическое): Воздействие на трубопровод в виде перемещения, например, температурные расширения, неравномерная осадка опор, смещение точек присоединения к оборудованию и т.д., измеряется в мм, градусах и т.д. Деформационные воздействия являются самоуравновешенными и для трубопроводов считаются менее опасными, чем силовые. Деформационные воздействия в статически определимых системах не вызывают появление внутренних усилий, а вызывают только перемещения.
3.6 воздействие силовое: Воздействие на трубопровод в виде силы измеряется, например, в Н, МПа, Н·м и т.д. Силовые воздействия являются несамоуравновешенными и считаются более опасными, чем деформационные воздействия. Силовые воздействия вызывают внутренние усилия и перемещения как в статически определимых, так и в статически неопределимых системах.
3.7 давление пробное: Избыточное давление, при котором должно производиться гидравлическое испытание трубопровода и его деталей на прочность и герметичность.
3.8 давление рабочее (нормативное): Наибольшее внутреннее давление, при котором обеспечивается заданный режим эксплуатации трубопровода.
3.9 давление расчетное: Максимальное избыточное внутреннее давление, на которое рассчитывается трубопровод или его часть на прочность.
3.10 допускаемое напряжение: Максимальное безопасное напряжение при эксплуатации рассматриваемой конструкции.
3.11 землетрясение: Колебания земли, вызываемые прохождением сейсмических волн, излученных из какого-либо очага упругой энергии.
3.12 интенсивность землетрясения: Мера величины сотрясения грунта, определяемая параметрами движения грунта, степенью разрушения сооружений и зданий, характером изменений земной поверхности и данными об испытанных людьми ощущениях.
3.13 компенсатор: Участок или соединительная деталь трубопровода специальной конструкции, предназначенная для восприятия температурных деформаций трубопровода за счет своей податливости.
3.14 ККСК: Корень квадратный из суммы квадратов.
3.15 линейно-спектральный метод анализа: Метод расчета на сейсмостойкость, в котором значения сейсмических нагрузок определяются по спектрам ответа в зависимости от частот и форм собственных колебаний системы.
3.16 метод динамического анализа: Метод расчета на воздействие в форме акселерограмм колебаний грунта в основании трубопровода путем численного интегрирования уравнений движения.
3.17 нагрузка: Силовое воздействие, вызывающее изменение НДС трубопровода.
3.18 нагрузка или воздействие нормативное: Наибольшая нагрузка, отвечающая нормальным условиям работы трубопровода.
3.19 нагрузка или воздействие расчетное: Произведение нормативной нагрузки или воздействия на соответствующий коэффициент надежности, учитывающий возможность отклонения нагрузки или воздействия в неблагоприятную сторону.
3.20 неподвижная опора (мертвая): Крепление трубопровода, запрещающее линейные перемещения и угловые перемещения потрем степеням свободы.
3.21 нормативное длительное сопротивление разрушению: Сопротивление разрушению материала труб (фитингов) с учетом внутреннего давления при заданном сроке службы трубопровода и температурном режиме его эксплуатации.
3.22 осциллятор линейный: Линейная колебательная система с одной степенью свободы, характеризуемая определенным периодом собственных колебаний и затуханием (демпфированием).
3.23 отклик: Ответная реакция конструкции (перемещение, ускорение, внутреннее усилие, нагрузка на опору и т.д.) на сейсмическое возмущение.
3.24 площадка размещения трубопровода: Территория, на которой размещается трубопровод. Или территория, на которой находится сооружение с размещенным внутри трубопроводом.
3.25 предел прочности (временное сопротивление): Нормативное минимальное значение напряжения, при котором происходит разрушение материала при растяжении.
3.26 предел текучести: Нормативное минимальное значение напряжения, с которого начинается интенсивный рост пластических деформаций при растяжении материала.
3.27 разжижение грунта: Процесс, вследствие которого грунт ведет себя не как твердое тело, а как плотная жидкость. Разжижение более характерно для насыщенных влагой сыпучих грунтов, таких как илистые пески или пески, содержащие прослойки непроницаемых для воды отложений. Разжижение грунта может произойти во время землетрясения, потому что при прохождении сейсмической волны частицы грунта начинают колебаться с разными скоростями и часть контактов между ними нарушается, в результате грунт может стать водой с взвешенными в ней песчинками.
3.28 расчетная схема; расчетная модель: Условная схема (упрощенная модель конструкции), которой заменяют реальную конструкцию для выполнения расчетов на прочность и устойчивость.
3.29 район размещения трубопровода: Территория, включающая площадку размещения трубопровода, на которой возможны сейсмические явления, способные оказать влияние на безопасность эксплуатации трубопровода.
3.30 сейсмическая волна: Упругая волна в геологической среде.
3.31 сейсмическая волна продольная; Р-волна: Сейсмическая волна, за фронтом которой колебания частиц происходят в направлении ее распространения.
3.32 сейсмическая волна поперечная; S-волна: Сейсмическая волна, за фронтом которой колебания частиц происходят в направлении, перпендикулярном направлению ее распространения.
3.33 сейсмическая волна Релея; R-волна: Интерференционная волна, распространяющаяся вдоль свободной поверхности грунта, поляризованная в вертикальной плоскости. Возникает при отражении глубинных волн от дневной поверхности грунта (аналогично волнам на воде), при этом элементарная частица грунта совершает круговые движения.
3.34 сейсмическая волна Лява; L-волна: Поперечная поверхностная волна, поляризованная в горизонтальной плоскости, возникающая при наличии зоны малых скоростей.
3.35 сейсмическое микрорайонирование: Комплекс специальных работ по прогнозированию влияния особенностей приповерхностного строения, свойств и состояния пород, характера их обводненности, рельефа на параметры колебаний грунта площадки. Под приповерхностной частью разреза понимается верхняя толща пород, существенно влияющая на приращение интенсивности землетрясения.
3.36 сейсмичность площадки размещения трубопровода: Интенсивность возможных сейсмических воздействий на площадке размещения трубопровода, измеряемая в баллах по шкале MSK-64.
3.37 сейсмостойкость трубопровода: Свойство трубопровода сохранять при землетрясении способность выполнять заданные функции в соответствии с проектом.
3.38 система, геометрически изменяемая: Система (в строительной механике), элементы которой могут перемещаться под действием внешних сил без деформации (механизм).
3.39 система, мгновенно изменяемая: Предельный случай геометрически неизменяемой системы (в строительной механике), допускающей бесконечно малые перемещения.
3.40 система стержневая: Несущая конструкция (в строительной механике), состоящая из прямолинейных или криволинейных стержней, соединенных между собой в узлах.
3.41 система, статически определимая: Геометрически неизменяемая система (в строительной механике), в которой для определения всех реакций связей (усилий в опорных закреплениях, стержнях и т.п.) достаточно уравнений статики.
3.42 система, статически неопределимая: Геометрически неизменяемая система (в строительной механике), в которой для определения всех реакций связей (усилий в опорных закреплениях, стержнях и т.п.) необходимы, помимо уравнений статики, дополнительные уравнения, характеризующие деформации системы.
3.43 скорость сейсмической волны: Величина, равная отношению расстояния между двумя точками геологической среды к времени пробега сейсмической волны между этими точками.
3.44 соединительная деталь: Деталь или сборочная единица трубопровода или трубной системы, обеспечивающая изменение направления, слияние или деление, расширение или сужение потока рабочей среды (отводы, тройники, переходы и др.).
3.45 состояние испытания: Состояние трубопровода после заполнения водой или воздухом (газом) под пробным давлением при испытании трубопровода на прочность и плотность.
3.46 состояние монтажное: Состояние трубопровода после завершения монтажа трубопровода, наложения тепловой изоляции, выполнения предварительной (монтажной) растяжки, регулировки всех пружинных цепей и заварки всех стыков, при этом температурный перепад и теплоноситель в трубах отсутствует.
3.47 состояние рабочее: Состояние трубопровода после первого разогрева и заполнения теплоносителем, а также приложения других нагрузок и воздействий (снег, обледенение, ветер, осадка опор и т.д.).
3.48 состояние холодное (нерабочее): Состояние, в которое переходит трубопровод из рабочего состояния после первого охлаждения (или нагрева - для низкотемпературных трубопроводов) до монтажной температуры и снятия давления.
3.49 спектр коэффициентов динамичности: Безразмерный спектр, полученный делением значений спектра ответа на максимальное ускорение грунта.
3.50 спектр ответа: Совокупность абсолютных значений максимальных ответных ускорений линейного осциллятора при заданном акселерограммой воздействии с учетом собственной частоты и параметра демпфирования осциллятора.
3.51 спектр ответа поэтажный: Совокупность абсолютных значений максимальных ответных ускорений линейного осциллятора при заданном поэтажной акселерограммой воздействии.
3.52 стержень: Тело (в строительной механике), длина которого во много раз превосходит характерные размеры его поперечного сечения, при этом ось стержня может быть прямолинейной или криволинейной.
3.53 температура расчетная: Температура материала детали, по которой выбирается величина допускаемого напряжения при расчете толщины стенки и вычисляется температурный перепад при расчете на прочность трубопровода.
3.54 толщина стенки номинальная: Толщина стенки трубы или соединительной детали, указанная в стандартах или технических условиях.
3.55 устойчивость трубопровода: Свойство конструкции трубопровода поддерживать первоначальную форму оси или форму его поперечного сечения.
3.56 фазовая группа креплений: Группа креплений, которая при сейсмическом воздействии всегда смещается синхронно. Например, все опоры трубопровода, установленные на одном этаже здания, смещаются синхронно относительно опор, установленных на земле. Все крепления, присоединенные к одному и тому же оборудованию, так же, как и первые, смещаются синхронно, т.е. представляют собой фазовую группу опор.
3.57 этап расчета: Условное сочетание нагрузок и воздействий, особенностей расчетной схемы и физико-механических характеристик материалов, соответствующее определенному состоянию трубопровода (рабочему, холодному, состоянию испытаний и т.д.) и используемое при определении напряженно-деформированного состояния трубопровода.

4 Обозначения и сокращения


Возврат к списку

(Нет голосов)

Комментарии (0)


Чтобы оставить комментарий вам необходимо авторизоваться
Самые популярные документы
Новости
Все новости