— Все документы — ГОСТы — ГОСТ Р 54390-2011/ISO/TS 16634-2:2009 ПРОДУКТЫ ПИЩЕВЫЕ. ОПРЕДЕЛЕНИЕ ОБЩЕГО СОДЕРЖАНИЯ АЗОТА ПУТЕМ СЖИГАНИЯ ПО МЕТОДУ ДЮМА И РАСЧЕТ СОДЕРЖАНИЯ БЕЛКА. Часть 2. ЗЕРНОВЫЕ, БОБОВЫЕ И МОЛОТЫЕ ЗЕРНОВЫЕ ПРОДУКТЫ


ГОСТ Р 54390-2011/ISO/TS 16634-2:2009 ПРОДУКТЫ ПИЩЕВЫЕ. ОПРЕДЕЛЕНИЕ ОБЩЕГО СОДЕРЖАНИЯ АЗОТА ПУТЕМ СЖИГАНИЯ ПО МЕТОДУ ДЮМА И РАСЧЕТ СОДЕРЖАНИЯ БЕЛКА. Часть 2. ЗЕРНОВЫЕ, БОБОВЫЕ И МОЛОТЫЕ ЗЕРНОВЫЕ ПРОДУКТЫ

ГОСТ Р 54390-2011/ISO/TS 16634-2:2009 ПРОДУКТЫ ПИЩЕВЫЕ. ОПРЕДЕЛЕНИЕ ОБЩЕГО СОДЕРЖАНИЯ АЗОТА ПУТЕМ СЖИГАНИЯ ПО МЕТОДУ ДЮМА И РАСЧЕТ СОДЕРЖАНИЯ БЕЛКА. Часть 2. ЗЕРНОВЫЕ, БОБОВЫЕ И МОЛОТЫЕ ЗЕРНОВЫЕ ПРОДУКТЫ

Национальный стандарт РФ ГОСТ Р 54390-2011/ISO/TS 16634-2:2009
"ПРОДУКТЫ ПИЩЕВЫЕ. ОПРЕДЕЛЕНИЕ ОБЩЕГО СОДЕРЖАНИЯ АЗОТА ПУТЕМ СЖИГАНИЯ ПО МЕТОДУ ДЮМА И РАСЧЕТ СОДЕРЖАНИЯ БЕЛКА. Часть 2. ЗЕРНОВЫЕ, БОБОВЫЕ И МОЛОТЫЕ ЗЕРНОВЫЕ ПРОДУКТЫ"
(утв. приказом Федерального агентства по техническому регулированию и метрологии от 30 августа 2011 г. N 250-ст)

Food products. Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content. Part 2. Cereals, pulses and milled cereal products

Дата введения - 1 июля 2013 г.

Введен впервые

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании"

Сведения о стандарте

1 Подготовлен ОАО "Всероссийский научно-исследовательский институт сертификации" (ОАО "ВНИИС") на основе аутентичного перевода на русский язык международного документа, указанного в пункте 4

2 Внесен Техническим комитетом по стандартизации ТК 335 "Методы испытаний агропромышленной продукции на безопасность"

3 Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 30 августа 2011 г. N 250-ст

4 Настоящий стандарт является идентичным международному документу ИСО/ТУ 16634-2:2009 "Продукты пищевые. Определение общего содержания азота путем сжигания по методу Дюма и расчет содержания сырого протеина. Часть 2. Зерновые, бобовыеимолотыезерновыепродукты" (ISO/TS 16634-2:2009 "Food products - Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content - Part 2: Cereals, pulses and milled cereal products").

Наименование настоящего стандарта изменено относительно наименования указанного международного документа для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5).

Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации (и действующим в этом качестве межгосударственным стандартам) приведены в дополнительном приложении ДА

5 Введен впервые

Введение

Долгое время метод Кьельдаля был самым широко используемым методом определения содержания белка в пищевых продуктах. Однако в последние годы метод Кьельдаля все чаще заменяют методом Дюма, который является более быстрым методом и не использует опасные химические вещества. Хотя принципы этих двух методов различны, оба они предназначены для измерения содержания азота в пищевых продуктах. Содержание азота можно пересчитать в содержание белка, используя подходящий коэффициент. Значение этого коэффициента изменяется в зависимости от относительного содержания различных белков и их аминокислотного состава в данном продукте.

Метод Дюма и метод Кьельдаля не делают различий между протеиновым и непротеиновым азотом. В большинстве случаев результаты, полученные методом Дюма, немного точнее результатов, полученных методом Кьельдаля. Это происходит потому, что метод Дюма измеряет почти весь непротеиновый азот, тогда как метод Кьельдаля измеряет только его часть.

Принимая во внимание тот факт, что содержание белка в продукте, рассчитанное обоими методами, только приближено к истинному значению, выбор метода дается на усмотрение заинтересованных сторон. Наиболее подходящим решением должно быть использование второго коэффициента для устранения систематической погрешности, вызываемой содержанием непротеинового азота в различных продуктах. Однако этот второй коэффициент необходимо определять для каждого продукта, как существующие коэффициенты, которые показывают отношение содержания белка к содержанию азота.

В настоящем стандарте для сохранения терминологии, принятой в Российской Федерации при применении методов контроля зерна и продуктов его переработки в продуктах с целью определения их качества и пищевой ценности, термин "сырой протеин" в ИСО/ТУ 16634-2:2009 в части зерновых, бобовых культур и молотых зерновых продуктов был заменен термином "белок".

1 Область применения

Настоящая часть стандарта устанавливает метод определения общего содержания азота и расчета содержания белка в зерновых, бобовых и молотых зерновых продуктах.

Настоящий метод, как и метод Кьельдаля (см. ссылки [1] и [6]), не делает различий между протеиновым азотом и непротеиновым азотом. Для расчета содержания белка используются различные коэффициенты пересчета (см. приложение D).

2 Нормативные ссылки

Следующие ссылочные документы обязательны для применения данного стандарта. Для датированных ссылок применяется только указанное издание. Для недатированных ссылок применяется самое последнее издание указанного документа (включая все изменения).

ИСО 712 Зерно и зерновые продукты. Определение содержания влаги. Стандартный контрольный метод

ИСО 6540 Кукуруза. Определение содержания влаги (целых и измельченных зерен)

ИСО 24557 Бобовые. Определение содержания влаги. Метод с использованием сушильного шкафа

3 Термины и определения

Применительно к данному стандарту используются следующие термины и определения.

3.1 содержание азота (nitrogen content): Массовая доля общего азота, определенного по методике, установленной в данной части стандарта.

Примечание - Массовая доля выражается в процентах.

3.2 содержание белка (crude protein content): Содержание азота (3.1), умноженное на коэффициент, составляющий обычно 5,7 для пшеницы, ржи и муки из них, и 6,25 - для других продуктов, подпадающих под данную часть стандарта.

Примечание - Коэффициенты для расчета белка по общему содержанию азота выводятся из метода Кьельдаля, который является стандартным (арбитражным) методом для определения общего содержания азота. Поскольку метод, установленный в данной части стандарта, использует такие же коэффициенты, что и метод Кьельдаля, достоверность этих коэффициентов необходимо проверить ввиду небольшого различия в результатах, полученных методом Кьельдаля и методом Дюма.

4 Сущность метода

Пробы превращают в газы нагреванием в трубке для сжигания. Мешающие компоненты удаляют из полученной газовой смеси. Соединения азота в газовой смеси или репрезентативную часть их преобразуют в молекулярный азот, который определяют количественно с помощью детектора по теплопроводности. Содержание азота затем рассчитывают с помощью микропроцессора.

5 Реактивы

Используют только реактивы признанной аналитической чистоты или равноценные, установленные изготовителями прибора. За исключением стандартных образцов (см. 5.12), все реактивы должны быть свободны от азота.

5.1 Газ(ы)-носитель(и): используют 5.1.1 или 5.1.2.

5.1.1 Диоксид углерода максимально чистый, минимальная чистота CO2 должна составлять 99,99% по объему.

5.1.2 Гелий максимально чистый, минимальная чистота должна составлять 99,99% по объему.

5.2 Кислород максимально чистый, минимальная чистота O2 должна составлять 99,99% по объему.

5.3 Абсорбент диоксида серы и галогенов для удаления серы из пробы [например, хромат свинца (PbCrO4) или стальная вата].

5.4 Катализатор оксид меди/платина для трубки дожигания.

Платиновый катализатор [5% Pt на оксиде алюминия (Al2O3)] смешивают с СuО в соотношении 1:7 или 1:8 в соответствии с рекомендациями изготовителя.

Чтобы предотвратить разделение как результат различной насыпной плотности двух материалов, рекомендуется не готовить смесь перед наполнением трубки, а засыпать платиновый катализатор и оксид меди одновременно в трубку дожигания через подходящую воронку.

5.5 Вата серебряная или медная. Перед помещением в трубку дожигания или восстановительную трубку вату необходимо распушить.

5.6 Диоксид кремния (кварц) или стекловата или хлопковая вата - в соответствии с рекомендациями изготовителя прибора.

5.7 Медь или вольфрам (проволока, стружка, опилки или порошок) для восстановительной трубки.

Применение меди или вольфрама в одной из указанных форм может повысить прецизионность аналитических результатов для проб с низким содержанием азота (порядка 1% по массе).

5.8 Пентоксид фосфора (P2O5) или гранулированный перхлорат магния [Mg(ClO4)2], или другое подходящее осушающее вещество для наполнения сушильных трубок.

5.9 Шары корундовые полые или гранулы оксида алюминия для трубки сжигания.

5.10 Оксид меди (СuО) как наполнитель для трубки сжигания.

5.11 Гидроксид натрия (NaOH) на подложке.

5.12 Кислота аспарагиновая (C4H7NO4) или кислота этилендиаминтетрауксусная (C10H16N2O8), или кислота глутаминовая (C5H9NO4), или кислота гиппуровая (C9H9NO3) как стандартный образец, или другие подходящие стандартные образцы с известным постоянным аттестованным содержанием азота.

Полнота обнаружения азота должна составлять > 99% по массе.

5.13 Эфир петролейный с температурой кипения от 30°С до 60°С или ацетон, или этиловый спирт.

6 Оборудование

Используют обычное лабораторное оборудование и, в частности, следующее:

6.1 Весы аналитические, обеспечивающие взвешивание с точностью до 0,0001 г.

6.2 Измельчитель в соответствии с характером пробы.

6.3 Сито с номинальным размером отверстий 800 мкм или 1 мм, изготовленное из материалов, кроме черных металлов.

6.4 Тигли (например, из нержавеющей стали, кварца, керамики или платины) или оловянные капсулы, или не содержащая азот фильтровальная бумага, подходящая для используемого аппарата Дюма.

Примечание 1 - В продаже имеются приборы, оснащенные автоматическим пробоотборником.

Примечание 2 - Некоторые твердые пробы (например, порошки) можно прессовать в таблетки.

6.5 Аппарат Дюма*, оснащенный печкой, в которой можно поддерживать температуру, равную или выше 850°С, с детектором теплопроводности и подходящим устройством для интегрирования сигнала.

Подходящий аппарат Дюма работает в соответствии с общей диаграммой, представленной в приложении А, хотя могут быть использованы разные компоненты.

Примечание - Схематические диаграммы трех имеющихся в продаже приборов приведены в качестве примеров в приложении В на рисунках В.1, В.2 и В.3.

Чтобы избежать утечек необходимо слегка смазать уплотнительные кольца высоковакуумной смазкой перед установкой.

Опыт показывает, что большое значение имеет тщательная очистка всех частей кварцевой и стеклянной посуды и удаление всех следов пальцев с трубок с помощью подходящего растворителя (например, ацетона), прежде чем поместить их в печь.

7 Отбор проб

Рекомендуется направлять в лабораторию представительную пробу. Она не должна быть повреждена или изменена во время транспортирования и хранения.

Отбор проб не является частью данного метода, установленного в настоящей части стандарта. Рекомендованные методы отбора проб приведены в ISO 24333 [7] для зерна и зерновых продуктов.

8 Подготовка пробы для анализа

Проба для анализа должна быть подготовлена из лабораторной пробы таким образом, чтобы получить гомогенную анализируемую пробу.

Используют подходящий измельчитель (6.2), измельчают лабораторную пробу. Обычно пропускают измельченный материал через сито (6.3) с номинальным размером отверстий 800 мкм для проб небольшого объема (до 300 мг) или сито с номинальным размером отверстий 1 мм - для проб большего объема (300 мг и выше). Мельницы, которые дают продукт, удовлетворяющий условиям, приведенным в таблице 1, дают приемлемые результаты.

Таблица 1 - Требуемый размер частиц

Номинальный размер отверстий сита, мкм

Проход через сито, % по массе

710

500

200

100

От 95 до 100

Не более 85

Измельчение может сопровождаться потерей влаги, поэтому содержание влаги в измельченной пробе предпочтительно определять также после измельчения, перед расчетом содержания азота или белка на основе сухого вещества или постоянного содержания влаги. Определение влагосодержания должно осуществляться в соответствии с ИСО 712 для зерновых, кроме кукурузы, ИСО 6540 - для кукурузы и ИСО 24557 - бобовых.

Эффективность измельчителя можно проверить повторным приготовлением измельченных образцов смеси 2 + 1 зерен кукурузы и сои. Ожидаемый коэффициент вариации должен быть не более 2% по массе.

9 Проведение испытания

9.1 Общие положения

Строго следуют инструкциям изготовителя при установке параметров прибора, оптимизации, градуировке и эксплуатации. Включают прибор и дают стабилизироваться в соответствии с принятыми в лаборатории процедурами.

Проверку рабочих характеристик прибора рекомендуется выполнять ежедневно, используя стандартный образец (5.12). Полнота обнаружения азота должна быть > 99,0% по массе.

9.2 Проба для анализа

Взвешивают с точностью до 0,0001 г не менее 0,1 г анализируемой пробы и помещают в тигель или оловянную капсулу или не содержащую азота фильтровальную бумагу (6.4). Для проб с низким содержанием белка (< 1% по массе) массу пробы для анализа увеличивают до 3,5 г в зависимости от типа прибора Дюма и свойств пробы.

В зависимости от типа применяемого оборудования, если проба содержит 17% по массе влаги, может потребоваться сушка пробы перед анализом.

Могут потребоваться меньшие массы для проб с очень высоким содержанием белка или в случае наличия очень малого количества материала для испытания. Если масса пробы менее 0,1 г, то проводят второе определение (валидацию).

9.3 Контроль подачи кислорода

Контроль подачи кислорода, в частности скорость потока, должен осуществляться в соответствии с инструкциями поставщика материала.

На каждую серию определения содержания азота проводят максимальное количество контрольных опытов, чтобы стабилизировать оборудование, используя для каждой серии эквивалентную массу сахарозы вместо пробы для анализа. Контрольный опыт с сахарозой дает количество азота, вводимого в форме атмосферного воздуха, захватываемого органическим порошкообразным материалом. Среднее значение контрольных определений используют в качестве поправки на погрешность при градуировке в содержание азота в каждой анализируемой пробе.

9.4 Градуировка

Для длительной градуировки прибора используют чистые соединения с известным постоянным содержанием азота, например аспарагиновую кислоту (см. 5.12), в качестве стандартного образца. Анализируют три чистых соединения в двух параллельных определениях, каждое соединение берут в трех вариантах по количеству как функции диапазона измерения для реальных проб.

Для построения градуировочной кривой выполняют не менее пяти определений с различными количествами одного и того же соединения, выбирая параметры (количество и тип соединения) для применения таким образом, чтобы полученная кривая охватывала диапазон содержания азота в анализируемых пробах.

Если анализируемая проба содержит более 200 мг азота, градуировочная кривая скорее всего будет нелинейной. На нелинейном участке короткие сегменты нельзя использовать для градуировки. Чтобы обеспечить надежность градуировочной кривой на этих сегментах, количество стандартного образца необходимо увеличить поэтапно от 1 до 5 мг азота на каждом сегменте.

Градуировку можно также выполнить с помощью стандартных водных растворов.

Проверяют градуировку не менее трех раз в начале серии анализов и после каждых 15 - 25 образцов, анализируя либо один из стандартных образцов (см. 5.12), либо образец с известным значением. Значение, полученное для массовой доли азота, должно отличаться менее чем на 0,05% от ожидаемого значения. В противном случае повторяют проверку градуировки после проверки рабочих характеристик прибора.

Градуировка оборудования - см. приложение С.

9.5 Определение

После стабилизации прибора вводят пробу для анализа в соответствии с инструкциями изготовителя.

В ходе анализа в приборе происходят следующие процессы (см. приложение В рисунок В.1, В.2 и В.3).

Анализируемую пробу количественно сжигают в стандартных условиях при температуре не менее 850°С в зависимости от прибора и анализируемого материала.

Летучие продукты разложения (главным образом, молекулярный азот, оксиды азота, диоксид углерода и водяной пар) транспортируются газом-носителем (см. 5.1) внутри прибора.

Оксиды азота восстанавливаются до молекулярного азота, а избыток кислорода связывается медью или вольфрамом (5.7) в восстановительной колонне.

Вода удаляется осушительными трубками, наполненными перхлоратом магния, пентоксидом фосфора или другим осушающим веществом (см. 5.8). Если в качестве газа-носителя используется диоксид углерода (см. 5.1.1), он удаляется посредством пропускания через соответствующий абсорбент, например, гидроксид натрия (5.11) на подходящей подложке.

Мешающие соединения (например, летучие соединения галогенов и серы) удаляются абсорбентами (5.3) или химическим реактивами, например серебряной ватой (5.5) или гидроксидом натрия (5.11) на подходящей подложке.

Оставшаяся газовая смесь, состоящая из азота и газа-носителя, проходит через детектор теплопроводности.

9.6 Обнаружение и интегрирование

Для количественного определения азота в приборе используется чувствительный элемент по теплопроводности, оптимизированный для используемого газа-носителя, который может оснащаться автоматической настройкой нуля между измерениями последовательной серии проб. После усиления и аналогового/цифрового преобразования сигнала детектора полученные данные обрабатываются периферийным оборудованием микропроцессора.

10 Расчет и обработка результатов


Возврат к списку

(Нет голосов)

Комментарии (0)


Чтобы оставить комментарий вам необходимо авторизоваться
Самые популярные документы
Новости
Все новости