— Все документы — Справочные пособия к СНиП — ПОСОБИЕ К СНиП 2.04.05-86 ПО ПРОЕКТИРОВАНИЮ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ МИКРОКЛИМАТОМ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ


ПОСОБИЕ К СНиП 2.04.05-86 ПО ПРОЕКТИРОВАНИЮ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ МИКРОКЛИМАТОМ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

ПОСОБИЕ К СНиП 2.04.05-86 ПО ПРОЕКТИРОВАНИЮ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ МИКРОКЛИМАТОМ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ СТРОИТЕЛЬНОЙ ФИЗИКИ
(НИИСФ) ГОССТРОЯ СССР

ПОСОБИЕ
ПО ПРОЕКТИРОВАНИЮ
АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ
МИКРОКЛИМАТОМ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

(к СНиП 2.04.05-86)

УтвержденоприказомНИИСФГосстрояСССР
31от24марта1986г.

Москва Стройиздат 1989

Рекомендованы к изданию решением секции строительной теплофизики Научно-технического совета НИИСФ Госстроя СССР.

Содержит основные принципы разработки и проектирования автоматизированных систем управления микроклиматом производственных зданий. Приведены основные задачи системы, даны рекомендации по анализу теплового режима здания как объекта управления. Разработаны общие, методы расчета, положенные в основу создания математической модели теплового режима здания. Даны рекомендации по разработке программного, информационного и технического обеспечения, а также по анализу технико-экономической эффективности.

Для инженерно-технических работников научно-исследовательских и проектных институтов.

ПРЕДИСЛОВИЕ

Важнейшим источником экономии топливно-энергетических ресурсов, затрачиваемых на теплоснабжение крупных производственных зданий со значительным потреблением тепловой и электрической энергии, является повышение эффективности работы системы отопления и вентиляции на основе использования современных достижений вычислительной и управляющей техники. Обычно для управления системами отопления и вентиляции служат средства локальной автоматики. Основным недостатком такого регулирования является то, что оно не учитывает фактический воздушный и тепловой баланс здания и реальные погодные условия: температуру и влажность наружного воздуха, скорость и направление ветра, атмосферное давление, солнечную радиацию. Поэтому под воздействием средств локальной автоматики система теплоснабжения работает, как правило, не в оптимальном режиме.

Эффективность работы системы отопления и вентиляции можно значительно увеличить, если, используя математическое моделирование теплового поведения здания, осуществить оптимальное управление системами, основанное на использовании ЭВМ и комплекса соответствующих технических и программных средств.

Формирование теплового режима можно представить как взаимодействие возмущающих и регулирующих факторов.

Для определения управляющего воздействия нужна информация о свойствах и количестве входных и выходных параметров и условия протекания процесса передачи тепла. Так как целью управления отопительно-вентиляционным оборудованием является обеспечение требуемых условий воздушной среды в рабочей зоне помещений зданий при минимальных энергетических и материальных затратах, то с помощью ЭВМ будет найден оптимальный вариант и выработаны соответствующие управляющие воздействия на эту систему. В результате ЭВМ с соответствующим комплексом технических и программных средств образует автоматизированную систему управления тепловым режимом помещений зданий (АСУ ТРП).

Разработка АСУ ТРП должна производиться в соответствии со следующими нормативными документами: ГОСТ 12.0.003-74* (СТ СЭВ 790-77); ГОСТ 12.1.005-88; ГОСТ 12.1.007-76*; ГОСТ 12.2.003-74* (СТ СЭВ 1085-78); ГОСТ 12.2.032-78; ГОСТ 12.3.002-75* (СТ СЭВ 1728-79); Стандартами групп 19…, 24…, 26…; ГОСТ 14255-69*; ГОСТ 20397-82*Е; ГОСТ 20886-85*; ГОСТ 23678-79; ОСТ 4-071.010-78; ОСТ 4-071.011-78; ОСТ 4-071.020-78; ОСТ 4-071.022-79; ОСТ 4-091.078-78; ОСТ 25.780-77; ОСТ 25.888-79; СН 245-71; СН 512-78; СНиП II-3-79**, СНиП 2.01.01-82; «Общеотраслевыми руководящими методическими материалами по созданию автоматизированных систем управления технологическими процессами (АСУ ТП)» [ОРММ-2 АСУ ТП], а также другими нормативными документами.

Разработано НИИСФ Госстроя СССР (д-р техн. наук Ю.А. Табунщиков, канд. техн. наук Ю.А. Матросов, Ф.В. Клюшников, инженеры В.Д. Патокин, В.М. Простаков и А.Н. Лазаренко); ЦНИИПромзданий Госстроя СССР (канд. техн. наук В.А. Дмитриев и инж. А.А. Духин), ЛТИХП (д-р техн. наук А.А. Рымкевич и канд. техн. наук В.М. Черепанов).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Пособие предназначено для проектирования и эксплуатации автоматизированной системы управления тепловым режимом производственных зданий (АСУ ТРП) с учетом оперативной информации изменения наружной среды.

1.2. Автоматизированную систему управления тепловым режимом производственных зданий можно проектировать как для вновь строящихся, так и для существующих производственных зданий во всех строительно-климатических районах.

1.3. Автоматизированную систему управления тепловым режимом рекомендуется проектировать комплексно для всего здания на основе анализа процессов обработки воздуха для зимнего, летнего и переходного периода с учетом графиков температур теплоносителей и тепловоздушных балансов в помещениях.

1.4. При проектировании системы необходимо обязательно учитывать конкретные условия и объемно-планировочные решения производственных зданий, технологию производства, тип и взаимное расположение станочного оборудования.

1.5. Систему рекомендуется проектировать для крупных производственных зданий, оснащенных системами:

приточной вентиляции производительностью 10 тыс. м3/ч и более;

приточной вентиляции, работающей с переменным количеством наружного и рециркуляционного воздуха;

приточной вентиляции, совмещенной с воздушным отоплением;

вытяжной общеобменной вентиляции при необходимости количественного регулирования;

кондиционирования воздуха;

воздушного отопления и душирования;

если регулирование требуется по условиям производства.

1.6. Настоящие рекомендации могут быть распространены на другие типы зданий (кинотеатры, спортивные комплексы, торговые залы, административные здания и т.д.).

1.7. Эффективность и надежность работы систем зависит от успешного решения следующих вопросов:

определения основной задачи управления, главной цели и критериев оптимизации;

разработки алгоритма управления, т.е. последовательности операций обработки вводимой в ЭВМ измерительной информации для определения величин управляющих воздействий, обеспечивающих выполнение задачи системы;

выявления тепловых особенностей здания и зон установки датчиков физических величин, характеризующих микроклимат помещения;

разработки математического описания теплового режима здания;

выбора управляющего электронно-вычислительного комплекса и математического обеспечения;

выбора устройств связи ЭВМ с объектом управления;

разработки программного и информационного обеспечения системы;

установления особенностей отопления и вентиляции здания и привязки системы к существующим устройствам отопления и вентиляции.

1.8. Эффективность работы системы следует устанавливать на основании технико-экономических расчетов. При этом необходимо учитывать, что для каждого периода времени, соответствующего уровню развития электронно-вычислительной техники и суммарному объему решаемых задач, существует оптимальный уровень, соответствующий минимальным затратам на приобретение, монтаж, эксплуатацию и развитие системы.

По опыту эксплуатации подобной системы в нашей стране и за рубежом экономия энергии по сравнению с системами на местных регуляторах может составлять 20 - 30 % и более.

1.9. Разработка, создание и ввод в эксплуатацию АСУ ТРП является принципиально новым делом. Поэтому при проектировании системы значительное место занимают научно-исследовательские и опытно-конструкторские работы. При вводе системы в эксплуатацию требуются также научно-исследовательские работы, так как фактическое тепловое поведение здания во время эксплуатации обычно отличается от расчетного.

2. ОСНОВНЫЕ ЗАДАЧИ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ТЕПЛОВЫМ РЕЖИМОМ ПРОИЗВОДСТВЕННОГО ЗДАНИЯ

2.1. Проектируемая автоматизированная система управления тепловым режимом производственного здания должна обеспечивать: требуемый температурный, влажностный и воздушный режим в зоне расположения технологического оборудования, необходимый для нормального выполнения технологических процессов; заданные значения температуры, влажности и подвижности внутреннего воздуха в рабочей зоне, определенные санитарно-гигиеническими требованиями; экономию затрат топливно-энергетических ресурсов на эксплуатацию здания; сокращение численности обслуживающего персонала.

2.2. Рабочей зоной считается пространство высотой до 2 м от уровня пола или площадки, на которой находятся рабочие места.

Параметры микроклимата в рабочей зоне устанавливают по СНиП 2.04.05-86.

2.3. Температура tв, относительная влажность jв и скорость движения воздуха v в различных помещениях зданий должны соответствовать их допустимым значениям в зависимости от характеристики помещений (их назначения и удельных избытков явного тепла), категорий работ, приведенных для холодного и переходного периода года в табл. 1, для теплого периода - в табл. 2.

Таблица 1

Категория работы

Температура воздуха tв, °С

Относительная влажность воздуха jв, %, не более

Скорость движения воздуха v, м/с, не более

Легкая

17 - 22

75

0,3

Средней тяжести

15 - 20

75

0,5

Тяжелая

13 - 18

75

0,5

Таблица 2


Возврат к списку

(Нет голосов)

Комментарии (0)


Чтобы оставить комментарий вам необходимо авторизоваться
Самые популярные документы
Новости
Все новости